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Abstract

Recent studies have suggested that the heat buildup of construction materials may be significantly reduced, without

affecting the material color, by the incorporation of scattering particles.

The scattering particles were found to alter the near infrared diffuse reflectance of the material, depending on their

refractive index, volume percent, and particle size combination. In addition, a theoretical model was developed and

correlated well with the experimentally measured values, accurately predicted increases in diffuse reflectance and drops

in temperature. Thus, the model may be effectively used to design dark colored polymeric materials with reduced heat

buildup properties.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Recent research on construction materials has shown

that, depending on the pigment system used to impart

color, a significant temperature rise may occur due to

absorption of infrared radiation [1]. Current trends in

the building products industry suggest that consumers

prefer to use darker colors for many applications.

However, it is well known that darker colors tend to

absorb more of the sun�s energy. Excessive temperature

rise above the polymer�s glass transition temperature

often results in failure of the parts while in service.

ASTM D4803-93, standard test method for predicting

heat buildup in PVC building products, was developed

to try to prevent these service failures from happening in

the field. Correlations between solar reflectance mea-

surements and heat buildup may also be used to predict

the maximum service temperature [1]. However, it would

also be beneficial if there were a predictive model

available for use in the formulation design process that

would predict temperature rise based on formulation

components alone.

Methods for improving the dimensional stability of

dark colored polymeric materials have historically fo-

cused on increasing the material�s modulus with rein-

forcing fillers or with heat distortion modifiers.

However, these solutions negatively affect other ele-

ments of the system, such as, impact properties and cost.

Other studies have suggested that the infrared reflec-

tance of a pigment/polymer system may be enhanced by

the incorporation of scattering particles that are trans-

parent at certain infrared wavelengths, thus reducing the

energy absorption of the material at those wavelengths,

and thereby reducing the temperature rise [1,2]. It has

been found that any material which is transparent to

infrared radiation in the required spectral range, and

which also has a refractive index substantially different

from its binder�s refractive index, may be used as an

infrared reflecting particle [2]. However, these particles

must not interfere with reflectance in the visible part of

the spectrum so that the desired color is maintained.

The solution for light scattering by a homogeneous

sphere was developed by Gustuv Mie in 1908 [3]. When

using this theory it is assumed that only single, in-

dependent scattering exists. The theory involves the
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solution of the scattering phase function, the degree of

polarization, and the scattering efficiency for a homo-

geneous sphere. In general, Mie scattering applies for a

size parameter (x) in the range 0:3 < ðx ¼ pD=kvacÞ < 5,

where D is the diameter of the sphere and kvac is the

wavelength of light in a vacuum [4]. However, energy

absorption by the medium, absorption by the particles,

or both can be accounted for in this theory, and the

results apply over the entire range of particle diameters.

If the absorptive index, k, is small (�1) and kx is �1,

then larger spheres can be treated with the Mie theory as

well [5]. A Fortran subroutine for solving the Mie

equations has been developed for a non-absorbing

sphere in a medium with refractive index of unity [4].

For large spheres, where x � 1, the scattering is essen-

tially a reflection process, which can be calculated from

simple geometric reflection relations [5].

Many studies have utilized the Mie theory for de-

termining the radiation transfer of thin films with very

low concentrations of homogeneous spheres, where they

have assumed only isotropic independent scattering and

non-reflecting boundaries [6–11]. Single scattering ap-

plies if a single ray of light traversing through a volume

of scatterers is scattered only once before leaving the

medium [10]. However, in most practical applications,

this is not the case. In the likely occurrence of multiple

scattering, energy scattered from one particle can hit

another and be scattered additional times before it exits

the medium. One theoretical check for single scattering

conditions that can be made is to calculate the optical

path, which is the product of the scattering coefficient

and the slab thickness. If the optical path is less than 0.1,

single scattering can be assumed. The calculations for

reflected energy are greatly simplified for single scatter-

ing systems, as the scattered intensity of the system is

simply the sum of the scattered intensities from the in-

dividual particles [10]. However, it has been shown that

an incoming scattering term may be added in the

equation of radiative transfer to account for multiple

scattering [6].

As was mentioned, in addition to single scattering,

another key assumption used in the studies above is that

of independent scattering. Independent scattering ap-

plies for conditions where the clearance between parti-

cles is large compared to the sphere diameter and

wavelength of radiation. However, studies on paint

layers have shown that the independent single scattering

assumption may not be sufficient to obtain the correct

solution of the radiative transfer equation [6,8,10,12–

14]. These studies indicate that it is likely that dependent

scattering will occur when the scattered electromagnetic

fields of particles interfere with each other due to an

increasing volume concentration of particles. As the

volume concentration of pigment is increased, the

spacing between particles is reduced. The interference

that results from this close spacing causes scattering

coefficients to decrease and absorption coefficients to

slightly increase [12]. Kumar and Tien [14] developed a

scattering regime map as a function of particle size pa-

rameter and volume fraction for various types of scat-

tering. Their results show that pigment dispersions may

potentially fall in either the independent or dependent

scattering range depending on the particle size and vol-

ume fraction. Specifically, for volume fractions at less

than 10% and for particle size parameters greater than 1,

it is likely that independent scattering exists [6].

In their study, Hottel et al. [11] predicted the reflec-

tion properties for a non-absorbing medium containing

non-absorbing spheres for single scattering, multiple

scatter for open-spaced particles, and multiple scatter

for close-packed systems. In comparing their experi-

mental results, an empirical equation for predicting the

interference for a multiple, dependent scattering system

was developed. This equation enables the use of existing

theory to calculate the bi-directional reflectance of close

packed spheres with good correlation to measured val-

Nomenclature

b extinction coefficient ¼ j þ rs

U scattering phase function––describes the

probability that a ray from one direction si,
will be scattered into a certain other direc-

tion s
u azimuthal angle

j the absorption coefficient

l cosine of the scattering angle

H scattering angle

h polar angle

r scattering coefficient

s optical depth

dX solid angle ¼ sin hi dhi du
x the scattering albedo

I local intensity at location s

s general direction of propagation

z perpendicular position of intensity with in a

plane parallel medium

IðsiÞ in-coming scattering intensity

si in-coming scattering directions

Ib black body intensity

Subscript

i in-coming radiation
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ues [8]. Essentially, the Mie equations are used to cal-

culate the scattering efficiency for the single scatter case

and an empirical relation is then used to determine an

effective scattering efficiency.

Shafey and Kumitomo [7] conducted a similar study

for an absorbing medium containing a high concentra-

tion of non-absorbing and scattering particles of pig-

ment. The study results indicate that as the volume

percent of particles increases, the difference in diffuse

reflectivity between measured values and those calcu-

lated using the Mie coefficients (independent scattering)

increases as well. They found that the empirical equation

for the interference effect mentioned above, which was

developed for pure scattering, was also in good agree-

ment with their results for a multiple and dependent

scattering–absorption system.

Varandan and coworkers [15] took the analysis fur-

ther to assess a heterogeneous medium in which there is

absorption by the matrix and the particles, where mul-

tiple and dependent scattering exists. Their research

suggests that an effective propagation constant is needed

to adequately describe the radiation as it propagates

through such a heterogeneous medium. Thus, the effec-

tive scattering efficiencies for this case can be determined

in terms of the effective propagation constant to account

for the enhanced absorption associated with dependent

scattering. In the solution, it is assumed that the wave-

length in the matrix material is much larger than the size

of the particles and results in a very small non-dimen-

sional frequency, which happens to fall in the Raleigh

region. However, the authors mention that with con-

siderable computational effort, this analysis can be ex-

tended to Mie particles as well. The results of this study

quantitatively illustrate that enhanced absorption, due

to dependent scattering, may greatly affect the diffuse

reflectance.

The isotropic scattering assumption used in the Mie

scattering analysis is often an idealization. The more

common problem of anisotropic scattering has generally

been avoided due to the complexities associated with the

analysis. Many researchers, such as Chandrasekhar

[16], and Love and Grosh [17] have solved the integro–

differential equations by Gaussian quadrature. Even with

a simple one-dimensional model, such as an isothermal

slab, the exact solutions to higher-order anisotropic

scattering require the solution of a four-term phase

function. Yet, Bergquam and Seban [18] reported using

simplified methods, such as the two-flux method, to deal

with realistic scattering phase functions. Domota and

Wang [19] used a modified two-flux method. Several

researchers have used a more realistic and less cumber-

some analysis of linear-anisotropic scattering [20,21].

Buckius and King [22] used the exponential kernal

method combined with linear-anisotropic scattering to

predict diffuse solar radiation. Dayna and Tien [23] also

applied this method to a gray slab at radiative equilib-

rium. Modest and Azad [20] demonstrated that the ap-

proximation of the phase function by linear anisotropic

scattering yields results of excellent accuracy for iso-

thermal slabs and slabs at radiative equilibrium.

2. Theoretical development

2.1. Physical model

In general, the physical model for this analysis may

be considered an optically thick, one-dimensional plane-

parallel medium consisting of a polymer matrix con-

taining evenly distributed pigment particles. Scattering

particles of different size and relative refractive index

were added to the pigmented medium, and their influ-

ence on the infrared diffuse reflectance and temperature

was assessed. The schematic shown in the Fig. 1 illus-

trates the physical model for the analysis.

2.2. Overall energy balance and equation of transfer

For the one-dimensional plane-parallel medium de-

scribed above, the direction of the intensity, as it moves

through the medium, is measured by the polar angle, h,

as measured from the perpendicular direction (z), and

the azimuthal angle, u, in the x–y plane. However, if it is

assumed that the temperature field and radiative prop-

erties of the medium vary only in the perpendicular di-

rection, the radiative intensity does not depend on

azimuthal angle and the overall energy equation reduces

to,

0 ¼ dq
dz

¼ d

dz
�kdT

dz

�
þ qr

�
ð1Þ

where q is the heat flux, k is the thermal conductivity of

the material and T is the temperature. Therefore, if an

expression for the radiative heat flux, qr, is known, the

temperature distribution across the z direction may be

derived.

In general, the radiative heat flux, may be expressed

in terms of local radiative intensity, Iðs; hÞ, where s is the

optical depth and h is the polar angle.

qrðsÞ ¼ 2p
Z p

0

Iðs; hÞ cos h sin hdh ð2Þ

Therefore, to develop a model to predict temperature,

the equation of transfer must be solved. The equation

below is the integrated form of the equation of transfer

for a plane parallel medium [5]:

Iðs; hÞ ¼ Ið0Þe�s þ
Z s

0

Sðs0; hÞe�ðs�s0Þ ds0 ð3Þ

Physically, this equation shows the contribution to the

local intensity by the intensity entering the medium at
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the surface (z ¼ 0). As the intensity travels through the

medium in some direction, h, it decays exponentially due

to extinction over the optical distance. The integrand in

the second term, contains the source function, Sðs0; hÞ,
which is the contribution from the local emission and in-

scattering at s0. This term is attenuated exponentially by

self-extinction over the optical distance between the

emission point and the point under consideration

(s � s0). The integral sums the contributions over the

entire emission path.

The source function may be expressed as [5]:

Sðs0; hÞ ¼ ð1 � xÞIbðs0Þ þ
x
2

Z p

0

Iðs0; hiÞUðh; hiÞ

	 sin hi dhi ð4Þ

In this equation, Iðs0; hiÞ is the in-scattering intensity at

the point of origin of the source, s0, x is the scattering

albedo, Ib is the black body intensity, and Uðh; hiÞ is the

scattering phase function.

2.3. Model equations

The general equation of transfer, Eq. (3), was mod-

ified for the polymeric medium described above. As-

suming a cold medium, the first term on the right hand

side of the source function term, Eq. (4), is neglected.

Thus, the source function is due only to the in-scattering

intensity. The only radiative source available to produce

the in-scattering comes from the external source. Some

of the lamp intensity is reflected at the surface and the

rest is attenuated over the optical depth to the position

where the in-coming scattering source originates, s0.
Therefore, the source function and local intensity reduce

to the following equations, which are also a function of

wavelength:

Sðs0Þk ¼ ð1 � qÞ ql

p
Uk e�s0=u ð5Þ

I þ ðs; uÞk ¼ Ilð0Þe�s=u þ
Z s

0

ð1 � qÞ ql

p
Uk e�s=u e�ðs�s0 Þ=u ds0

u

ð6Þ

I � ðs;�uÞk ¼ �
Z sL

0

ð1 � qÞ ql

p
Uk e�s=u e�ðsL�sÞ=u ds0

�u
ð7Þ

for 0 < ðu ¼ cos hÞ < 1.

In these equations, q is the reflectance at the surface

of the slab, as determined from the Fresnel equation, ql

is the radiation source, and Uk is the spectral scatter-

ing phase function. Eq. (6) shows the local intensity

limited to directions emanating from the upper inter-

face traveling in ‘‘positive’’ (downward) directions for

0 < h < p=2, and Ilð0; hÞ is the intensity at the top sur-

face at s ¼ 0. Eq. (7) shows the local intensity limited

to ‘‘negative’’ (upward) directions for p=2 < h < p. In

order to solve the equation of transfer and complete

the temperature calculation, the optical depth and scat-

tering phase function must be determined.

To determine the optical depth and scattering phase

functions for small particles of size 1 to 20 lm, Bohren�s
Mie Fortran program was modified to include a distri-

bution of particles sizes for wavelengths from 350 to

2600 nm [10]. The Mie scattering efficiencies, Qsca, were

used to determine the Mie scattering coefficients, rs, and

therefore, the optical depth, s. To account for the dis-

tribution of sphere particle sizes, the scattering coeffi-

cient was first integrated over the radius range to give

q lamp  W/m2

Z = 0

Z = L

’

I+ ( , ) 
for 0 <  < /2,  or for 0 < u < 1 

where u = cos

I1(0,θ

θ

θ
θ

θ

θ
θ

θ
τ θ

)

I- (τ,θ) 
for π π

π

/2  <  < ,  or for -1 < u < 0

where u = cos

’s

s

P

Qs                         Q             τ  

Ie

τ

τ

τ

Fig. 1. Schematic of a one-dimensional plane parallel medium.
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spectral scattering coefficient, rsðkÞ. The total optical

depth was then determined by integrating over the entire

wavelength range.

rsðkÞ ¼ p
Z 1

0

Qscaða; kÞa2nðaÞda ð8Þ

s ¼ L
Z 2600 nm

350 nm

rsðkÞdðkÞ ð9Þ

Similarly, the Mie Fortran program was used to de-

termine the scattering phase functions, as a function of

radius and wavelength. As described by the equation

below, the scattering phase function is first calculated

for each sphere radius and wavelength combination, for

angles from 0� to 180�. By integrating over the particle

size range, the dependence on radius maybe be ac-

counted for, yielding a scattering phase function that is

dependent on wavelength and scattering angle only,

UðHÞk ¼
p
rk

Z 1

0

Qscaa
2UðH; a; kÞnðaÞda ð10Þ

For large particles of sizes 88 to 106 lm, large sphere

scattering theory was applied for both specular and

diffuse sphere assumptions. The specular scattering

phase function is determined from the following equa-

tion, where qs is the hemispherical specular reflectivity

for a large specular sphere and H is the scattering angle,

UðHÞ ¼ qs ðp � HÞ
2

ð11Þ

Also, since qs is equal to the scattering efficiency of

the system, the scattering coefficient may be found from

the following equation for a distribution of particles

nðaÞ:

rsðkÞ ¼ pqs

Z 1

0

a2nðaÞda ð12Þ

For a large diffuse sphere, the scattering efficiency is

equal to the hemispherical reflectivity of the sphere and

is substituted into Eq. (12) to determine the diffuse

scattering coefficient. The diffuse scattering phase func-

tion is shown below [24,25]:

UðHÞ ¼ 8

3p
sin h þ h cos h ð13Þ

It has been shown in the literature that linear ap-

proximations of exact scattering phase functions may be

used with good results [5]. By choosing appropriate

forward (or backward) scattering cut-off angles and

taking a linear approximation of the resulting curve, the

theoretical scattering phase function curves for Mie

particles may be approximated. Modest and Azad sug-

gest using the double Dirac function as follows [20]:

UðHÞ ¼ 2f dð1 � lÞ þ 2bdð1 þ lÞ þ ð1 � f � bÞU�ðHÞ
ð14Þ

U�ðHÞ ¼ 1 þ A�
l PlðlÞ ð15Þ

In the above equations, f is the forward-scattered frac-

tion of energy. The expression, (1 � f ), is equal to

U�ð0�Þ, the value of the linear scattering phase function

with the scattering angle equal to zero (H ¼ 0�). The

value of b is the fraction of energy scattered in the

backwards direction (H ¼ 180�), usually zero except for

large diffusely reflecting particles; A�
l is the slope of the

line, and PlðlÞ is the first order Legendre polynomial of

l, the cosine of the scattering angle.

To account for other than isotropic scattering, and if

there is no appreciable backscattering (b ¼ 0), the

equation of transfer may be easily modified by replacing

UðHÞ in Eq. (1) with the linear-anisotropic scatter-

ing phase function (U�). In this case, the fraction of

forward scattered intensity is treated as transmitted and

the scattering coefficient (rs) may be replaced with an

effective scattering coefficient r�
s ¼ ð1 � f Þrs [5]. The

effective scattering coefficient is also used in the deter-

mination of the optical depth (s).

Once the radiative transfer equation is solved, the

temperature of the polymeric sheet may be determined

by deriving the temperature profile from the solution of

Eqs. (1) and (2). The resulting temperature profile was

found to be:

T ¼ 2aqlamp

Ut

krs

� ��
� e�rsz � rsze�rsz � e�rsz

� e�2rsLþrsz þ e�rsLþrsz
�
þ C1z

k
þ C2 ð16Þ

where, a is the absorptivity, U is the value of the scat-

tering phase function in the forward direction (u ¼ 1), rs

is the total scattering coefficient, and C1 and C2 are

constants.

To complete the temperature calculation, the bound-

ary conditions must be considered as follows:

At z ¼ L;
dT
dz

¼ 0 ð17Þ

At z ¼ 0; T ð0Þ ¼ Te ¼
aql

er

h i1=4

ð18Þ

where Te is the equilibrium upper surface temperature

determined from the surface energy balance. In Eq. (15),

ql is the radiation source, e is the known emissivity of the

material, a is the absorptivity of the material and r is the

Stefan–Boltzman constant.

Therefore, for the upper surface, as the negative

traveling intensity propagates through the medium, it

will encounter the upper interface where part of the in-

tensity will be reflected back into the medium as the

specular reflectivity, Rs, as described by Snell�s law and

the Fresnel equation. The intensity that is refracted at

the interface is the emergent intensity, Ie, which may be

defined in terms of the negative traveling intensity at the

surface (s ¼ 0):
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Ie ¼
½1 � RsðS0Þ


n2
2

I � ð0Þ ð19Þ

where n is the refractive index of the polymeric medium.

The bi-directional diffuse reflectivity was determined by

the following equation:

rd ¼ pIe
I0

ð20Þ

The hemispherical diffuse reflectance, Rd, was deter-

mined by integrating bi-directional diffuse reflectivity

(rd) over the hemisphere. Thus the value of the spectral

absorptivity (ak) may be determined from the following

equation:

ak ¼ 1 � ðqk þ Rsk þ VRdkÞ ð21Þ

In this equation, qk is the known diffuse reflectance value

of the pigmented matrix material, Rsk is the calculated

spectral specular reflectance at the upper interface, and

DRdk is the spectral diffuse reflectance difference which

was calculated as outlined above. This value represents

the change in diffuse reflectance of the pigmented matrix

material due to the addition of the scattering spheres.

Using the equations above, the diffuse reflectance

difference and temperature profile across the slab were

determined and compared to the actual experimental

values.

3. Experimental design

3.1. Materials

Two compositions of scattering particles, with dif-

fering refractive index, and various particle size ranges

were selected for this study. The materials are listed

below:

Georgia Gulf substrate compound––1% TiO2

blue pigment

microsphere composition:

GL-0191 (refractive index ¼ 1.51)

GL-0176 (refractive index ¼ 2.1)

The control formulation, consisting of the polymer

compound and 1% blue pigment, was used as the me-

dium for the various microsphere formulations. The

refractive index (n) of this material was found to be 1.59

through Ellipsometry testing. All formulations were

prepared in duplicate and were processed on a two-roll

mill at 360 �F and were pressed into a plaque 70 mils

(0.1778 cm) in thickness. The microsphere formulations

are listed in Table 1.

3.2. Experimental testing and results

The samples were evaluated for diffuse reflectance as

a function of wavelength, up to 2600 nm, using an in-

tegrating sphere spectrophotometer. The statistical sig-

nificance of the data was also assessed. Fig. 2 shows the

percent reflectance curves for the two Mie particle for-

mulations versus the control formula. The figure shows

that the addition of the GL-0176-Mie spheres to the

control medium provided an increase in infrared reflec-

tance.

Fig. 3 shows the percent reflectance curves for the

two large sphere formulations. The curves show that for

both large sphere formulations, there is a decrease in the

percent reflectance over wavelength ranges from 700 to

Table 1

Microsphere formulations

Microspheres Refractive

index

Particle size

range (lm)

Volume

percent

GL-0176-Mie 2.1 1–20 10

GL-0176-Large 2.1 88–106 10

GL-0191-Mie 1.51 1–15 10

GL-0191-Large 1.51 88–106 10

0
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40

50

60

70

80

90

300 600 900 1200 1500 1800 2100 2400

GL-0191-Mie
GL-0176-Mie
Control

Fig. 2. Percent reflectance for Mie particle formulations of GL-

0191-Mie.
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GL-0176-Large
GL-0191-Large
Control

Fig. 3. Percent reflectance for large sphere formulations of GL-

0191-Large and GL-0176-Large spheres.
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1200 nm. The data presented in both figures was inte-

grated over the wavelength range of 700–2600 nm to

obtain the total reflectance for the NIR region.

From the statistical analysis of the data, it was found

that the GL-0176 formulation was statistically different,

to a 95% confidence level, from the control due to in-

creased infrared reflectivity. These results are summa-

rized in Table 2 and show that the sample preparation

and test method were reproducible.

Temperature rise testing was conducted on the four

formulations versus the control using ASTM D4803-93:

standard method for predicting heat buildup in PVC

building products. In the test, a 250 w infrared lamp is

used to simulate energy from the sun. Previous work has

shown that the temperature rise test has an inverse

correlation of 95% with reflectance data––the higher the

reflectance values, the lower the temperature rise. In

previous studies, this test was also found to be repro-

ducible and to correlate with actual sun exposure [1,26].

The bottom surface temperature of each sample was

recorded as a function of time versus a black body. The

surface temperatures were normalized using the black

body temperatures measured during each test so that the

individual test data may be directly compared. The data

is also summarized in Table 3.

4. Comparison of theory and experiment

4.1. GL-0176-Mie spheres (1–20 lm)

The results from the Mie program indicate that both

the scattering coefficient and the forward scattering

phase function vary with wavelength and particle size.

On a spectral basis, the scattering was most efficient

when the particle and wavelength were of similar size.

Similarly, for the entire distribution of particles, the

highest wavelength was found to provide the largest

forward scattering value. In fact, the highest diffuse re-

flectance difference and the highest forward scattering

phase function was found to occur at 2600 nm. This

would suggest that reflectance would increase if smaller

particles of this composition were used in the formula-

tion.

The phase function plots also revealed that as the

wavelength increases, the level of transmitted intensity,

as indicated by the value of (1 � f ), decreases. Thus, the

intensity goes from being 100% transmitted, i.e., scat-

tered in the direct forward direction, to having a larger

fraction if intensity scattered in a linear-anisotropic

fashion. The analysis of the total scattering phase

function plot reveals that for the refractive index, par-

ticle distribution and particle density in question, linear-

anisotropically scattered fraction is 0.2%. This result is

illustrated in Fig. 4.

Fig. 5 illustrates a comparison of the theoretical and

experimental diffuse reflectance difference for the GL-

0176-Mie sample versus the control formulation. The

figure shows that the increase in reflectance due to the

addition of the GL-0176-Mie microspheres was pre-

dicted using the model and correlates with the increased

reflectance values as measured by the Shimadzu spec-

trophotometer. These spectral values were then in-

tegrated over the entire wavelength range to obtain

the total diffuse reflectance difference. The percent

error between the calculated and experimental diffuse

Table 2

Summary of results for reflectance test

Formula Sphere refractive index Particle size (lm) NIR reflectance (%) Standard deviation

GL-0176-Mie 2.1 1–20 35.3 0.1

GL-0176-Large 2.1 88–106 24.3 0.1

GL-0191-Mie 1.51 1–15 24.8 0.4

GL-0191-Large 1.51 88–106 23.7 0.6

Blue control 27.4 0.2

0
0.001
0.002
0.003

0.004
0.005
0.006
0.007

0.008
0.009
0.01
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Fig. 4. Wavelength integrated Mie scattering phase function

for GL-0176-Mie spheres of 1–20 lm.

Table 3

Temperature rise test results

Formulation Measured equilibrium tem-

perature (�C)

Blue control 122.4 (395.5 K)

GL-0176-Mie 114.5 (387.6 K)

GL-0176-Large 124.8 (398 K)

GL-0191-Mie 123.5 (396.7 K)

GL-0191-Large 125.5 (398.6 K)
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reflectance difference was only 0.3%. These results sug-

gest that 0.2% linear-anisotropic scattering was enough

to provide this 10.6% increase in diffuse reflectance.

4.2. GL-0191-Mie spheres (1–15 lm)

The sample containing the GL-0191-Mie particles

was found to have less scattering efficiency than the GL-

0176 sample, as shown by comparing the forward scat-

tering peaks and the forward scattering fractions in Figs.

6 and 4, respectively. The results indicate that almost all

of the intensity is transmitted directly in the forward

direction for the GL-0191-Mie spheres. This result di-

rectly impacts the bi-directional reflectivity. The only

source of radiation for the negative traveling intensity

comes from the intensity that penetrates into the me-

dium from the external source at the top surface. This

intensity is scattered at the particle–medium interface

and is subsequently redirected in a fashion illustrated by

the scattering phase function. If this scattering is negli-

gible, then the negative traveling intensity is negligible.

This result may be due to the fact that the refractive

index of these spheres are very close to that of the

wavelength averaged refractive index of the medium.

Therefore, as was expected, the addition of the GL-

1091 spheres resulted in a negligible emergent intensity

and therefore a negligible diffuse reflectance difference.

The experimental reflectance results for this sample were

found to be statistically the same as that of the control

formulation. However, as illustrated by Fig. 7, this ap-

plication of the Mie theory will only predict an increase

in reflectance. As shown by the curve representing the

measured values of reflectance, the addition of the GL-

0191-Mie spheres caused a decrease in reflectance at

several wavelengths. Where the control sample had

higher reflectivity, the calculated reflectance difference

was found to be negligible. However, at wavelengths of

2.4 and 2.5 lm, where the addition of the GL-0191-Mie

spheres did increase the reflectivity, the calculated values

predicted this slight increase. Thus, this method of pre-

diction of diffuse reflectance will not provide an indica-

tion of a reflectivity reduction, only an increase.

For both samples, the total diffuse reflectance differ-

ence values and the total effective scattering coefficient

were used in the temperature calculation. Table 4 sum-

marizes the theoretical model and experimental results

for both the GL-0176-Mie and GL-0191-Mie samples.

4.3. Large spheres (88–106 lm)

To check the large sphere assumption for the re-

maining formulations, the diffuse and specular cases for

large spheres were assessed. The formulations contain-

ing spheres of size 88–106 lm have very large size

parameters––on the order of 100. For these spheres, the

laws of geometric optics may be used to determine the

scattering coefficients and phase function. Depending on

the type of reflection at the sphere–medium interface, the

reflection may either be diffuse or specular in behavior.
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Fig. 5. Diffuse reflectance difference comparison GL-0176-Mie

spheres of size 1–20 lm minus control material.
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spheres of size 1–15 lm minus control material.
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For a diffusely reflecting sphere, there is a large back

scattering component to the scattering phase function,

and very little forward scattering. It is possible to

imagine that as the radiation interacts with a diffuse

sphere, a large portion of that scattered intensity is re-

directed at 180�, which would be the negative traveling

direction. However, when the negative traveling inten-

sity interacts again with another sphere, it would then be

redirected back again, thus resonating between spheres

until the intensity is attenuated. This ultimately would

lead to a limited source for the emergent intensity, and

therefore a lower diffuse reflectance. The diffuse reflec-

tance analysis used does not enable the calculation of a

‘‘negative’’ change in reflectance. However, for the GL-

0176-Large sample, the calculated value of diffuse re-

flectance difference was negligible (0.004%) and the

temperature was calculated to be essentially identical to

the experimental value, with only 0.5% error. However,

for the GL-0191-Large sample, the diffuse reflectance

difference was found to be 1.6% and the temperature was

predicted to be 3.5 �K higher than the experimental

value. The fact that spectral data for the spheres was

unavailable, forcing the use of total properties only, may

be a source of error for this analysis.

Based on these results for the large two sphere for-

mulations discussed above, it is likely to assume that the

spheres under consideration may be diffusely reflecting.

Fig. 8 shows the scattering phase function for a diffuse

particle as determined via Eq. (13). Since the scattering

behavior of a diffuse sphere is independent of the re-

fractive index, this phase function may be applied to

both GL-0176-Large and GL-0191-Large spheres. The

diffuse reflectance difference, DRd, and temperature were

calculated via Eqs. (16)–(21).

Specular reflection occurs when the radiation is re-

flected back at the same angle of incidence for each lo-

cation of the sphere surface. The spheres are assumed to

be dielectric with the absorptive index essentially zero as

compared to the refractive index n. However, k is as-

sumed to be large enough to ensure that the spheres are

opaque [5]. Specifically, for the specular case, spheres of

refractive index m ¼ 1:51 and 2.1 were compared.

For a specular reflecting sphere, there is a large for-

ward scattering peak, which as determined in the Mie

analysis, results in a high emergent intensity and a high

diffuse reflectance. The two specular cases evaluated in

the study, for a refractive index of 1.51 and 2.1, reveal

that as the relative refractive index between the particles

and the matrix increases, the greater the specular re-

flectivity is at the sphere–medium interface. Since this

specular reflectivity is equal to the scattering efficiency of

the system, the diffuse reflectance and therefore the

temperature drop is directly affected by refractive index.

For the GL-0191-Large spheres of refractive index

1.51, the specular reflectivity was very low, 1.5%. This

result is due to the fact that the relative refractive index

for the spheres and medium is very close to unity. Thus,

there is very little redirection of intensity due to inter-

action at the interface of the medium and sphere. As a

result, the forward fraction, f , of scattered radiation is

98%, and therefore, may be considered to be transmitted

through the medium. Therefore the reflectivity and

temperature results are not surprising that they appear

to be similar to that found for the GL-0191 Mie case,

which had the same refractive index and large forward

scattered fraction as well.

In assessing the behavior of specularly reflecting

spheres of greater refractive index, 2.1, Fig. 9 shows the

greater scattering phase function. For the sample eval-

uated, even though the specular reflectivity was found to

be only 6.4%, the value of (1 � f ) is 40%, thus leading to

higher values of diffuse reflectance and a large temper-

ature drop. Clearly in comparing these calculated results

to the experimental analysis, the GL-0176-Large spheres

selected do not show this type of scattering behavior.

The calculated temperature drop was found to be 22.8

�K for specularly reflecting spheres of given particle

density and refractive index 2.1, whereas the experi-

mental data showed no appreciable difference from the

control sample. Since spectral optical properties were

not available for these spheres, only total properties

were assumed and utilized in the analysis. Fig. 9 shows

the scattering phase function and a linear approximation

for specular spheres of refractive index 1.51 and 2.1.

Table 4

Summary of Mie scattering analysis results

Property GL-0176 GL-0191

Forward scattering fraction f (%) 99.8 �100

DRd calculated (%) 10.64 0.084

DRd measured (%) 10.61 )3.27

Calculated temperature (K) 387.5 404.4

DT (K) (calculated � measured) 0 7.8
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Fig. 8. Scattering phase function for a large diffusely scattering

sphere.
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The linear-anisotropic approximations were used in

the diffuse reflectance and temperature calculations.

Table 5 below summarizes the results for the diffuse and

specular large sphere analysis.

5. Case study

To further understand how refractive index and

particle size may affect the scattering phase function, the

Mie scattering efficiency (Qsca) and scattering phase

function data for the GL-0191-Mie and GL-0176-Mie

spheres at a wavelength of 2.6 lm (and for a particle

density of Nt ¼ 10�4 lm�3) were compared to a theo-

retically designed particle of refractive index of 3.45 for

two different particle size ranges. The results of this

analysis are summarized in Table 6 and the phase

function plot comparisons are shown in Figs. 10 and 11.

As shown in the Table 6, for the sample considered

with an average particle size of 3.5 lm, the refractive

index has very little effect on the scattering behavior of

the spheres. Even though the GL-0176-Mie spheres

show the greatest scattering efficiency, the forward

scattering fractions are equivalent for all three materials,

at 99.98%, indicating that most of the intensity would be

transmitted for spheres of this size, refractive index,

wavelength and particle density. Fig. 10 illustrates the

similar scattering behavior for each refractive index case.
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Fig. 9. Large sphere specular scattering phase function plots

for GL-0176-Large and GL-0191-Large spheres of size 88–106

lm.

Table 6

Mie theory comparison––effect of refractive index and particle size

GL-0191 (m ¼ 1:51) GL-0176 (m ¼ 2:1) m ¼ 3:45

For an average radius of 3.5 lm
Scattering efficiency (Qsca) 1.34 3.29 2.85

Forward scattered fraction (%) 99.98 99.98 99.98

For an average radius of 0.5 lm
Scattering efficiency (Qsca) 0.48 3.14 5.67

Forward scattered fraction (%) 88.44 40.66% 8.31%

Table 5

Diffuse and specular scattering summary of results

Property GL-0176 (88–106 lm) GL-0191 (88–106 lm)

Specular Diffuse Specular Diffuse

Forward scattering f (%) 60 �100 98 �100

DRd calculated (%) 14.8 0.004 1.8 1.6

DRd measured (%) )2.03 )2.03 )3.71 )3.71

Calculated temperature (K) 374.4 396 401.8 402.1

DT (K) (calculated � measured) )22.8 0.7 3.2 3.5

DT percent error (measured versus calculated) 5.9 0.5 0.8 0.9
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Fig. 10. Mie scattering phase function comparison for average

particle radius ¼ 3.5 lm and wavelength ¼ 2.6 lm.
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It should be noted that with a particle radius of 3.5 lm,

the size parameter, even at a wavelength of 2.6 lm, falls

outside of the typical Mie scattering range. However, for

dielectric particles, this range may be extended by an

order of magnitude in some cases [5]. Greater differences

are seen between the different refractive index cases

when the average particle size is assumed to be small. In

this example, the theoretical (hypothetical) spheres

showed a much higher efficiency and scattered fraction

as compared to the other spheres.

In Fig. 11, the phase function for the m ¼ 1:51 case

shows very little scattering behavior versus the other

refractive indices. The forward scattering fraction is

88.44%, indicating a large portion of the intensity is

transmitted in the forward direction. The results from

the reflectivity analysis above would suggest that this

behavior would lead to low negative traveling intensity

values and therefore low levels of diffuse reflectance.

However, it is evident that the m ¼ 2:1 case for this small

particle size would be more effective at increasing the

diffuse reflectivity than the actual sample evaluated

which has a larger-size particle distribution. By reducing

the particle size range from 3.5 to 0.5 lm, the forward

scattering fraction would be reduced from 99.8% to

40.66%.

Thus, from this analysis, the theoretical sample with

a refractive index of 3.45 and particle radius of 0.5 lm

provides the greatest scattering efficiency, forward scat-

tering peak and the lowest forward scattered fraction of

only 8.31%. This indicates that most of the intensity

would be scattered in a linear-anisotropic fashion, which

would then provide the source of greater intensity in the

negative traveling direction, thus leading to greater

values of diffuse reflectance.

Since the reduction in temperature due to the GL-

0176-Mie (1–20 lm) spheres was only 10.6 �K, the case

for the theoretically designed spheres of refractive index

3.45 was evaluated further over the entire wavelength

range. The calculated diffuse reflectance difference versus

the control and the theoretical temperature drop was

determined for this parametric design case. Fig. 12

shows the diffuse reflectance difference plot for these

particles. The figure shows spectral diffuse reflectance

differences approaching 50% versus the control material,

with very little effect on reflectivity in the visible range of

the spectrum (0.4–0.7 lm).

The Mie scattering phase function plot and its linear

approximation are shown in Fig. 13. Table 7 summa-

rized the wavelength integrated diffuse reflectance dif-

ference and scattering coefficient, the forward scattering

phase function and the calculated temperature for this

design case. As shown by Fig. 12 and the temperature

drop shown in the table above, the higher refractive

index and the smaller particle size of the theoretically

designed particle offers improved performance versus

the actual cases evaluated. The difficulty is in obtaining

spheres of this limited particle size.
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Fig. 11. Mie scattering phase function comparison for average

particle radius ¼ 0.5 lm and wavelength ¼ 2.6 lm.
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6. Conclusions

In summary, to provide a dark colored polymeric

material with minimal heat buildup, a Mie scattering

particle approaching 0.5 lm in radius with a large rel-

ative refractive index is needed to optimize scattering in

the near infrared part of the electromagnetic spectrum.

Similarly, for specular scattering, the higher the re-

fractive index mismatch between the medium and

spheres, the greater the scattering efficiency will be for

the system. Specularly reflecting spheres have preferen-

tial scattering in the forward direction but as long as the

majority of the radiation is not transmitted directly

forward, the greater are the emergent intensity and dif-

fuse reflectance. As with Mie scattering, specularly

scattering particles may offer large temperature drops.

However, the spectral optical properties are needed for

the sphere to determine if it will affect the reflectance

properties in the visible range of the electromagnetic

spectrum.

Because diffusely reflecting particles have a large

backscattering preference, they reduce the source of in-

tensity for the negative traveling intensity. Thus, these

systems offer reduced reflectivity and therefore higher

temperatures.

The diffuse radiation at the upper surface of the slab

is dependent upon how well the negative traveling in-

tensity propagates through the medium. This intensity is

highly dependent upon two key factors: (1) the available

source for negative traveling intensity and (2) the scat-

tering efficiency of the system. The source of intensity

traveling within the medium originates from the external

source at the top surface. However, to become a sig-

nificant source for the negative traveling intensity, effi-

cient scattering is required at the sphere–medium

interface, and there must be a large fraction that is

scattered other than in the direct-forward direction. In

addition, there must be negligible back scattering. These

factors directly affect the diffuse reflectance and the

temperature of the material.

It has been found for this experimental and theoret-

ical comparison that the combination of the modified

Mie Fortran program and the linear-anisotropic scat-

tering assumption enable an accurate prediction of val-

ues of increased diffuse reflectance and temperature

drop. Therefore, this model may then be used to for-

mulate dark colored polymeric materials with reduced

temperature rise properties for building products appli-

cations.
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